Interactions of the transposase with the ends of Mu: formation of specific nucleoprotein structures and non-cooperative binding of the transposase to its binding sites.
نویسندگان
چکیده
Transposition of the E. coli bacteriophage Mu requires the phage encoded A and B proteins, the host protein HU and the host replication proteins. The ends of the genome of the phage, on which some of these proteins act, both contain three transposase (A) binding sites. The organization of these binding sites on each end, however, is different. Here we show, using DNase footprinting experiments with purified A protein, that mutant A binding sites, which affect transposition, have decreased affinity for the transposase. Furthermore the transposase binds non-cooperatively to all A binding sites both in the left and right end of Mu. Electron microscopic studies show that the A protein forms specific nucleoprotein structures upon binding to the ends of Mu. The A and B proteins interact with the ends of Mu to generate larger structures than with the A protein alone.
منابع مشابه
Solution structure of the Mu end DNA-binding ibeta subdomain of phage Mu transposase: modular DNA recognition by two tethered domains.
The phage Mu transposase (MuA) binds to the ends of the Mu genome during the assembly of higher order nucleoprotein complexes. We investigate the structure and function of the MuA end-binding domain (Ibetagamma). The three-dimensional solution structure of the Ibeta subdomain (residues 77-174) has been determined using multidimensional NMR spectroscopy. It comprises five alpha-helices, includin...
متن کاملRefolding of Lysozyme Upon Interaction with ?-Cyclodextrin
Effects of ?-cyclodextrin, ?CD, on refolding of lysozyme was investigated at pH 12 employing isothermal titration calorimetry (ITC) at 300K in 30mM Tris buffer solution. ?CD was employed as an anti-aggregation agent and the heats obtained for lysozyme+?CD interactions are reported and analyzed in terms of the extended solvation model. It was indicated that there are two sets of identical and no...
متن کامل3D reconstruction of the Mu transposase and the Type 1 transpososome: a structural framework for Mu DNA transposition.
Mu DNA transposition proceeds through a series of higher-order nucleoprotein complexes called transpososomes. The structural core of the transpososome is a tetramer of the transposase, Mu A, bound to the two transposon ends. High-resolution structural analysis of the intact transposase and the transpososome has not been successful to date. Here we report the structure of Mu A at 16-angstroms an...
متن کاملAssembly of the mariner Mos1 synaptic complex.
The mobility of transposable elements via a cut-and-paste mechanism depends on the elaboration of a nucleoprotein complex known as the synaptic complex. We show here that the Mos1 synaptic complex consists of the two inverted terminal repeats of the element brought together by a transposase tetramer and is designated paired-end complex 2 (PEC2). The assembly of PEC2 requires the formation of a ...
متن کاملMutational analysis of the att DNA-binding domain of phage Mu transposase.
The transposase (A protein) of phage Mu encodes binding to two families of DNA sites, att sites located at the Mu ends and enhancer sites located internally. Separate subdomains in the N-terminal domain I of Mu A protein are known to be involved in recognition of the att and enhancer sites. We have delineated an approximately 135 aa region within domain I beta gamma that specifies binding to Mu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 15 21 شماره
صفحات -
تاریخ انتشار 1987